.: Math Note: If you cannot view some of the math on this page, you may need to add MathML support to your browser. If you have Mozilla/Firefox, go here and install the fonts. If you have Internet Explorer, go here and install the MathPlayer plugin. Math
> Number theory
> Natural Numbers
Natural NumbersProperties of the set of positive integers.Sibling topics:Contents:
Definition of prime
For `t in NN` where `t>1`, `t` is prime if the only divisors of `t` are 1 and `t` itself. More
concisely, if `t` is prime, then:
`(AA x in NN)(x div t => [x=1 or x=t])`
If `t` is not prime (and `t>1`), then `t` is composite. That is:
`(EE u,v in NN)(u>1 and v>1 and t=uv)`
The number 1 is neither prime nor composite.
Theorem: Product of natural number factors is not less For all `a,b in NN`, `ab>=a and ab>=b`. That is, the product of two natural numbers is at least as large
as both of its factors.
Proof:
We'll first prove that `ab>=a`. Because `b` is a natural number, we know that `b>=1`. This gives two cases:
